Menofia University Faculty of Engineering Shebien El-kom Basic Engineering Sci. Department. Academic Year: 2017-2018 Date: 30/12/2017

Subject: Mathematical Models Code: BES 510 Time Allowed: 3 hours Year: Master Total Marks: 100 Marks

Answer all the following questions: [100 Marks]

Q.1	(A) <u>Write brief notes on the following topics:</u>							
		(1)	The mathematical models? And What are the benefits of using the					
			mathematical models?					
		(2)	The characteristics of the mathematical model?					
		(3)	The types of mathematical models?					
		(4)	The steps of constructing a mathematical model?					
		(5)	The computational modeling? and state some examples of					
			computational modeling? And how can computational modeling					
			improve medical care and/or biomedical research?					
		(6)	The physical Modeling? The aims of physical modeling?					
		(7)	Draw the flow chart for relation between physical and					
			Mathematical Model?					
		(8)	State the classes of physical modeling?					
		(9)	Define Dynamic System and Mention some examples to illustrate it.					
		(10)	State the evolution rule of dynamic system.					
		(11)	Define the Probabilistic Model? and where do the uncertainty	*				
•			occur? And state some Examples on Probabilistic Model.					
		(12)	Explain chaos theory?					
	(B)	Wri	te a mathematical model to describe the motion of a block with mass					
		(m)	and is connected to a vertical spring of spring constant ($m{k}$). A block					
		stre	tches the spring by a distance xs from its unstretched position when					
	the system is in equilibrium as in the figure below. Determine the mass							
		of tl	ne object, the maximum amplitude of oscillation such that the top					
		bloc	k will not slip on the bottom block.					

	(C)	Write a mathematical model to describe the motion of a projectile of									
		mass	mass $(m) kg$ and diameter $(d) m$ with launching speed (V_P) with								
		launch	launching angle (α) using the evolution rule to determine the position								
		ofthe	of the particle and draw the trajectory of the particle.								
	(D)	Find and Solve the Difference equation associated with the following									
		sequer	nce 7 . 17	.37.77.	157.	57			0		
Q.2	(A)	Consid	er the f	ollowing	, dynam	ical sys	tem a_{n+}	$h_1 = \frac{1}{1+h_1}$	$-; b_{n+1} = \frac{1}{4+a}$	[30]	
		Find it	Find its steady states and discuss its behavior for any positive value of								
		initial	initial values.								
	(B)	The mo	The model $y = y_o e^{kt}$, with $k > 0$, is sometimes used to model bacterial								
		growth	growth.								
		(i) Des	(i) Describe the qualitative predictions made by the model. In								
		particular, show that									
		$G(t) = \frac{y(t+1)}{y(t)}$, does not actually depend on <i>t</i> .									
		(ii) Describe an experiment that tests the prediction of part (i).									
		(iii) Describe a physical setting in which this model for population									
		gro	owth is c	learly no	t approp	oriate.					
		(iv) Describe a physical setting in which this model for population									
		gro	owth mig	ht be ap	propriat	e.					
	(C)	One of t	he data s	sets in be	low tabl	e has the	e origin a	as its me	an point.	2	
		(i) Find the equation of the straight line that best fits that data.									
		(ii) Plot the data and the best-fit line together on a graph.									
			x	-4	-1	0	2	3			
			<i>y</i> ₁	-5	-2	0	2	4			
			y_2	-5	-2	1	2	4			
	(D) Prove that $B(X_1, \dots, X_n; Y)$ is a Banach space by using the natural										
		identification $B(X_1, \dots, X_n; Y) \cong B(X_1, B(X_2, \dots, X_n; Y)).$									

2/3

777 1

Q.3 (A) Derive the results of the linear least squares method for the model [30] y = mx,

$$m = \frac{\sum xy}{\sum x^2}, \quad RSS = \sum y^2 - \frac{(\sum xy)^2}{\sum x^2} = \sum y^2 - m \sum xy,$$

by applying optimization methods from calculus to the total discrepancy function: $F(m) = (\sum x^2) m^2 - 2 (\sum xy) m + (\sum y^2)$.

(B) Two possible models for the dynamics of a renewable resource (biotic or abiotic) are

$$\frac{dx}{dt} = \mathbf{0} \cdot \mathbf{1} - \frac{xy}{\mathbf{1} + x} \quad \text{and} \quad \frac{dx}{dt} = \mathbf{0} \cdot \mathbf{1} \cdot \mathbf{x} - \frac{xy}{\mathbf{1} + x}$$

where x(t) is the amount of resource present at time t and y is the number of consumers.

- (i) For each of these models, describe a mechanism that accounts for the growth of the resource in a way that is consistent with the model.
- (ii) Explain the assumption the models make about the consumers.
- **(C)** Solve the following 2nd order difference equation:

$$x_{n+2} - 2 x_{n+1} + 2 x_n = 0$$

with initial conditions $x_1 = 0$, $x_2 = 1$.

(D) Solve the following system using Euler's method

$$x' = -2tx + 3y^2$$
, $y' = -3x^2(1-y)$

with I.C x(0) = -1, y(0) = 2. With step size h = 0.1, from t = 0.1 to t = 0.5

This exam measures the following ILOs									
Question Number	Q1-a	Q1-b	Q3-b	Q4-a	Q1-c	Q2-a	Q3-a	Q4-c	
	Q4-b				Q2-b	Q2-c	Q3-c		
	Knowledge &understanding skills				Intellectual Skills		Professional Skills		

Good Luck

Dr. Ramzy M. Abumandour